3 PARAMAGNETIC AND ANTIFERROMAGNETIC PHASES...

half-occupancy of the band. If we choose the zero-
order Hamiltonian to be the Hartree one, for which

“’0=%I ’ (D3)

while simultaneously removing the Hartree part
of the interaction potential, we find no change in
chemical potential as the interaction is turned on.

On the other hand, there are no anomalous diagrams.

All such diagrams would contain interaction lines
between like-spin particles which is impossible in
the Hubbard Hamiltonian. It is then easy to see
that
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E'=0, (D4)

and under these conditions the Goldstone expansion
for the energy is valid. But then the Goldstone
energy is independent of any one-body potential that
may be added to the unperturbed Hamiltonian and
subtracted from the interaction part as long as the

Fermi surface remains the same. Since this is

the case for the Hartree potential in our analysis,
we can safely conclude that the Goldstone expansion
using the noninteracting Hamiltonian to zero order
is also valid.
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The form of the modulation of the critical dc Josephson current I, of a tunnel junction by
an applied magnetic field B is shown to be uniquely related to the supercurrent density dis-
tribution within the junction integrated over the direction of B. This relation is used to
quantitatively determine these “current-density profiles” from I (B) measured for Sn-oxide-
Sn junctions with barriers prepared by plasma-discharge oxidation and for the novel light-
sensitive junctions described by Giaever, in which the tunneling barrier is formed by an

evaporated film of CdS.

I. . INTRODUCTION

In the field of tunneling between metals and semi-
conductors® the production of a uniform tunneling
barrier has been a long-standing problem. Such
techniques as thermal oxidation, 2 plasma-discharge
oxidation, * anodization* or evaporation of thin in-
sulating films® all have been employed. Usually at

best only indirect evidence of the barrier perfection
has been available.

A direct means of investigating this question is
presented by the dc Josephson effect.® 7 As
Josephson has shown, a supercurrent can flow by
the tunneling mechanism for junctions between two
superconductors. The maximum supercurrent den-
sity that can flow at any point is proportional to the
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tunneling probability at that point. For such junc-
tions an applied magnetic field B modulates the
magnitude I, of the critical supercurrent, ® as first
demonstrated experimentally by Rowell.? In the
most familiar example B is applied to a rectangular
junction of dimensions a and b, parallel to, say,

the b dimension., If the tunneling barrier is uniform
and self-field effects are negligible, I,(B) has a
Fraunhofer shape of |(sinjfa)/(5pa)|, where 8 is

a normalized measure of B to be defined. In prac-
tice the experimental I (B) in this geometry always
departs from this form, one reason being that the
junction tunneling barrier and supercurrent density
distribution are not uniform.

In this work we discuss the relation between the
shape of the I,(B) of a rectangular junction and the
supercurrent density distribution within the junc-
tion, based on a connection between the two by
Fourier transformation.” In Sec. II we present the
formal relationship and describe methods for de-
riving information in practice about the supercur-
rent density distribution from the I,(B). In Sec. III
we describe the experimental procedures and pit-
falls, and in Sec. IV we analyze experimental I (B)
curves for Sn-oxide-Sn tunnel junctions with a bar-
rier formed by plasma-discharge oxidation and for
the novel Sn-CdS-Sn light-sensitive tunneling junc-
tions first investigated by Giaever. !

II. THEORY

Consider a rectangular tunnel junction lying in the
x-y plane with sides parallel to the x and y axes
and extending to x=+3a and y=+3b. The junction
has an average barrier thickness 4 and supports a
tunneling supercurrent density in the z direction of

J(x,y) =J(x,y) sinp(x, y) ,

where J(x, ) is the maximum current density at
the point (x,v) and ¢(x,y) is the phase difference at
(x,y) between the order parameters of the super-
conductors on either side of the tunnel junction.
The phase differences at the two points (xy,y,) and
(x4, v, obey the relation

‘P(xz,yz) - <p(x1,y1) = 2TI<I>/(I)O s

where ®,="h/2¢ is the flux quantum and & is the
amount of magnetic flux linking a loop joining the
two points and extending well beyond the penetration
depth A into the superconductors on either side.

The superconductors we take to be thick on the scale
of A. Suppose that & is due to an applied field B in
the y direction, so that

@(x3,9 2) — @lx1,y,) = 20B(2h + d) (x5~ x1)/ Py .
Then the total tunneling supercurrent is the integral

‘ b/2 al2
I(B, o) = f-bla dy f-a/a dx J(x,y)
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X sin[27B(2X +d) x/®4 — ¢q] , (1)

where the reference phase ¢, is ¢(0, 0), the phase
difference at the junction center. The observed
critical current I,(B) of the junction for fixed B is
just the maximum of I(B, ¢,) obtainable by varying
¢@o. If we use the normalized magnetic field unit
B=2m(2A+d)B/®, and define g (x) as

900 fb/

2 Jx, y)d
[y Ty,

then (1) becomes
/
16, 99 =Tmle™"0 [*" dx s e . (2)

We denote the complex Fourier transform of d(x)
by

§@=J"" axgte. @)

Consequently, the experimental quantity I,(B) is
LB =]98) ; @)

i.e., I,(B) is the magnitude of the complex Fourier
transform of a “current density profile” J(x) which
is the current density at the point x integrated over
the y direction. It is convenient to extend the lim-
its of the integrals to %~ and take the cutoff at +3a
as part of the shape of J(x).

We can write 9(8) as 9(8)=1,(8)e®®, where 6(B)
is real. To construct J(x) one must know both
18(B) | =I,(B) and 6(B). To determine 6(B) we use a
Hilbert-transform procedure which, in principle,
gives an exact recovery of 6(8). As an alternative
we also employ an approximate but simple recon-
struction of J(x) based on the assumption that J(x)
is nearly an even function of x.

The Hilbert transform relates I,(8) and 6(B) by
the formula®

B

o) | av Melopnl® ®)

The use of this procedure depends upon the fact that
J(x) (except in isolated instances) has a “minimum-
phase property.” From 6(B) and I.(B) one can then
reconstruct the current density profile

g W)= /2m) [7 dBI,(B)e'*® -1, G)

Actually the 8 produced in this transform, if (5) is
used to obtain the phase, is shifted such that it ex-
tends from O to @ rather than from -%a to +3a.
Such a shift corresponds to the addition of a term
+Ba to 6(B). For simplicity we shall refer to the
profile as g (x) regardless of the position of the
origin.

The second, simpler approach to construct J(x)
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is based on the assumption that § (x) is an approxi-
mately even function. Let Jy(x) and J,(x) be, re-
spectively, the odd and even parts of g(x), and let

cp= f_: dxJ,(x) cospx ,

S(B)= [ _ dx3y(x)siny

denote the transforms of these two functions. Then
9(B) is 5(B) =C(B) +iS(B), and L(B) is 19(B) |
= [c¥%(B) +S%(B)]" 2.

Suppose J, vanishes. Then 9(pB) is real and I,(B)
= |C(B)I. K J(x) were constant for [x|<3a, I,(B)
would have the |(sin3Ba)/(} fa)| form, for which the
nodes are evenly spaced and correspond to integral
numbers of applied flux quanta being present in the
barrier and the penetration depths of the adjacent
superconductors. If §(x) is even but not constant,
C(pB) will in most cases still oscillate between posi-
tive and negative values with diminishing amplitude
so that I.(8) will vanish at particular values of 8,
but the nodes will no longer be evenly spaced or
correspond exactly to integral numbers of applied
flux quanta. This deviation must be taken into ac-
count if the spacing between the nodes is used to
determine A,

Now suppose Jy(x) is not zero. Then I,(B)
=[C?%B) +5%B)]'/ 2 is always nonzero unless by chance
C(B) and S(B) vanish simultaneously. If, however,
d, is small compared to J, in the sense that
IC(B) 12> IS(B) I? for most B, then I,(B) will be ap-
proximately equal to [C(B)| except near the zeros
of C(B), where the value of S(B) becomes important.
In this case to a good approximation the minima
I.(B) occur at IC(B)]=0, and the magnitude of I,()
at these minima will give the value of 1S(B) | at
these points. If experimentally I,(8) consists of
well-defined maxima separated by deep minima we
may assume that J (x) is approximately even and
construct J,(x) assuming that 1C() |~ I,(g), taking
alternate lobes of the pattern as positive and nega-
tive and interpolating linearly through the minima.
The heights of the minima then give a semiquanti-
tative measure of the odd part of J(x).

III. EXPERIMENT

The junctions are formed between two evaporated
rectangular strips of Sn or Pb in the perpendicular
crossed-strip geometry, giving a rectangular or
square junction of typical dimensions ~0.2 mm,
The barriers are formed by thermal or plasma-
discharge oxidation, or by evaporation of an in-
sulating material such as CdS. The junctions are
immersed in liquid He. Stray magnetic fields are
excluded by a u-metal can having an internal
field < 1072 G, and the magnetic field B is applied
to the junction by a solenoid whose axis lies parallel
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to the junction edges. The critical current I, is
monitored using a Pacific Measurements CRT dis-
play converter in conjunction with a Tektronix 561
oscilloscope. The current-voltage characteristic
of the junction is displayed on the oscilloscope at a
repetition rate of a few hundred Hz, and the con-
verter is adjusted to sample the current magnitude at
the voltage onset in each cycle. This current I,
is recorded on one axis of an x-y recorder against
B on the other axis, giving a continuous plot of
I.(B) as B is swept. Both positive and negative
critical currents, denoted I,,(B) and I, (B), are re-
corded for a range of B symmetric about B=0.

For these junctions I,(B) typically approximates
the Fraunhofer form. The largest I, (a few mA
or less) occurs at B~ 0, and I, oscillates with in-
creasing B, approaching zero at roughly evenly
spaced minima (~ 1 G spacing) and increasing be-
tween to maxima lying on a generally decreasing
envelope. Several factors may distort these I,(B)
from the ideal shape of Eq. (4). Among these are
stray external B fields, trapped flux in the films,
self-field effects, noise, and shorts. These affect
the I,(B) in different characteristic ways, as follow,

The stray magnetic field B, from sources other
than trapped flux is nearly uniform at the junction
in our experiments. It may be resolved into com-
ponents B, and B, perpendicular and parallel to the
applied B. The B, causes small obvious shifts in
the B scale of I(B), while B, enters the integral
(1) so that I,(B) is actually the magnitude of the
Fourier transform of the complex quantity

b/2
[y AvI(x,y) exp[2mi(22+d)By, /]

For the 1072 G stray fields here, however, this
quantity is essentially J (x).

In the absence of stray magnetic fields the I,(B)
should obey the symmetry requirement

L.(+B)= -1, (-B) . (7)

Stray fields associated with trapped flux cause
this relation to be violated. In these experiments
we found that the I,(B) usually either obeyed (7) to
the precision of the measurement (allowing for a
small offset in B due to a uniform stray field), or
showed significant differences between I,, and I,_
of the order of 20-50% difference in the size of
some corresponding fringes, several times the
measurement precision. The large effect reflects
the fact that flux is trapped in units of ®,. We ex-
perienced good success in avoiding trapped flux by
cooling the sample through the superconducting
transition slowly in the low-field environment and
by taking care to align the sample surfaces parallel
to the -applied field B.

Self-field effects'? are distortions of I,(B) due to
gradients of & induced by the magnetic fields of the
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junction currents. The strength of these effects is
characterized by 2A;, the Josephson penetration
depth, given by A, = [uoJ(2A+d)/®,]"}/2 where J is
the local current density, assumed uniform for
simplicity. If the junction dimensions are small
compared to A;, the self-field distortion of the
I,(B) is relatively small.’® In our crossed-strip
geometry the current feed to the junction is asym-
metric with respect to the applied B. Here the
first-order effect of self-fields can be approximated
by assuming that the junction current I produces

a small uniform magnetic field B;, of magnitude
B~ y1/b, which aids or opposes the applied B.
This produces a slight tilt of the I,(B) in the opposite
sense for I, and I,_, preserving the symmetry (7).
The distortion is largest for the central maximum.
Experimentally the extent of the effect is revealed
by the an offset AB; between the maxima of I, and
I,.. Corrections may be made by adjusting the
value of B for a given I, proportionally. Generally
in our experiments this tilt was small.

Thermal or other voltage noise impressed on the
junction causes fluctuations of ®, reducing the ob-
served I, from the noise-free value. 1 Since the
phase-coupling energy —I,(B)®,/2m determining the
stability of the supercurrent against these fluctua-
tions depends on B, so does the factor by which I,
is reduced, being larger for smaller I,. The re-
duction is hard to predict quantitatively, however,
as it depends sensitively on such factors as the im-
pedance and spectrum of the noise source, the ca-
pacitance and damping by quasiparticle resistance
of the junction, and the measurement time-scale.
Experimentally we find that a characteristic of
junctions affected by noise is that values of I,(B)
which lie below a certain current level tend to be
strongly reduced, causing an obvious distortion of
the shapes of the I,(B) minima, while above this
range little reduction is apparent. In typical cases
I, is reduced to zero over an interval of B about a
minimum. In these experiments the range of
noise-limited currents was I, < 1-10 uA, depending
on the individual junction. To avoid such effects
we tried to use junctions of relatively large I,, con-
sistent with avoiding self-field effects.

Besides tunneling, a second path for supercurrent
flow is provided by any shorts through the barrier.
The I,(B) of a shorted junction depends on the rela-
tive sizes of the tunneling and short critical super-
currents and the shape of the short-current phase
relation. If the current phase relationis sinusoidal,
then the high-current-density shorts behave as 6-
function-like features of § (x). If the short-current
phase relation is not sinusoidal, either intrinsically
or as a result of self-field effects, I,(B) may be
affected in various ways. From the related case of
two small separated junctions with nonsinusoidal
effective-current phase relations, 15 one might ex-
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pect features in I,(B) such as cusplike minima,
asymmetric fringe shapes with respect to the di-
rection of B, or displacement of the maximum val-
ue of I, from B=0. If the short critical current is
smaller than a few percent of the tunneling super-
current, such effects might not be noticeable and
probably the short would appear as a sharp feature
in the constructed J (x).

The I,(B) which we use for the determination of
J(x) are chosen to be free as far as possible of these
effects. Specifically, we require that they obey
(7), that their self-field tilt correspond to AB;
< 20% of the oscillation period, and that they have no
obvious major depression of the minima of I, from
noise effects.

IV. DATA

In Figs. 1, 4, and 7 we show plots of I(B) for
three different junctions. The data points are taken
directly from the continuous recorder tracings and
are the average of I, (B) and I,_(B). In all three
cases I,, and I,_ have the same form (after correc-
tions are made for a small self-field tilt) except
in the immediate vicinity of the minima. Near these
points a cross-talk effect in the converter induces
a slight base line shift which is removed by the
averaging. Also in these figures we show the posi-
tions of the maxima for a Fraunhofer form of cor-
responding I,(0) and magnetic field period.

In Fig. 1 we show I,(B) at 1.43°K, for one of our
better Sn-oxide-Sn junctions. The junction dimen-
sions were a =0.26 £0.01 mm and b=0.41+0.01 mm
and the film thicknesses ~ 2000 A. The oxide bar-
rier was formed on the film of width a, i.e., the
strip parallel to the applied B, by exposing the film
to an oxygen plasma discharge before cross-evap-
orating the second strip. The I (B) has approxi-
mately the ideal Fraunhofer form. The maximum
critical current was 3.39+0.01 mA, and the average
magnetic field spacing between successive minima

—
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FIG. 1. I (B) pattern at 1.43°K for a Sn-oxide-Sn
junction for positive 8. The central maximum is re-
duced by a factor of 5. Crosses indicate the positions
and heights of the maxima of a Fraunhofer pattern.
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FIG. 2. Constructed phase 6(B) for the I (B) pattern

of Fig. 1.

was 0.695+0.01 G corresponding to a value of
~1140+50 A for 2 +d, reasonable for Sn. Cor-
rections for a self-field tilt of AB;=0.08 G have
been applied.

Three deviations from the Fraunhofer form are
notable in Fig. 1. First, the minima do not vanish
exactly, showing that J(x) has an odd part. The
values of I, at the minima are of the order of 10 A,
values on the upper edge of those I,’s which are
appreciably reduced by noise. Second, the secondary
maxima are somewhat small, being ~10% low for
the first and increasing to ~ 30% low for the tenth.
Third, the spacing of the minima is not uniform,
e.g., the first minimum occurs at 0.725+0.01 G
compared to the average spacing of 0.695 G.

A construction of J (x) was performed in the man-
ner described in Sec. II, using the I,(B) to construct
the phase 6(8) via (5). The phase construction was
performed by digital computer using Simpson’s-
rule integration taking I,(B) at intervals of 0.03 G,
or about 23 points per fringe, with the integration
extending out to the 11th sidelobe in each direction.
Figure 2 shows the constructed phase, and Fig.

3(a) shows the barrier profile § (x) resulting from
this amplitude and phase. For convenience we plot
both I, and 6 against B in gauss rather than in the
normalized units 8. This leads to an ambiguity in
the scale of x in the transform which is of course
removed by knowing the actual junction width.

The J(x) is the Fourier series

EnIc(Bn) €xp {7' [G(Bn) - an]} ’

where the B, are the evenly spaced points at which
L(B) is sampled extending to the last point 8,. As
always with Fourier series, the finite cutoff at B,
in effect convolutes the true J(x) with a (sing, x)/
B, x function, leading to a smoothing of sharp fea-
tures and a Gibbs’s phenomenon11 at discontinuities
such as the junction edges, this being an overshoot
of the order of 7% on either side of a discontinuity.
The resolution attained in J(x) is approximately
equal to the barrier width divided by the number of
fringes used in the series, in this case ~ 0. 04a.
The shape of J(x) in Fig. 3(a) approximates a

SUPERCURRENT DENSITY DISTRIBUTION IN JOSEPHSON JUNCTIONS

3019

uniform barrier, with deviations inside the junction
edges on the order of 10%. The center of the junc-
tion appears to carry a larger current than the
edges. Some structure is observed beyond the
well-defined edges of the junction, due partly to
the Gibbs’s phenomenon and partly to errors in
the construction. These are mostly less than 5%
of the barrier height except the larger sharp nega-
tive feature on the left-hand side.

The error in the constructed J(x) compared to the
real J(x) depends on the following considerations.
It is inherent in the procedure used that the con-
structed J(x) will give precisely the input I,(B)
pattern. Any errors other than those arising from
a distorted I,(B) come from distortions in the phase
such as must occur due to the finite cutoff in the
I.(B) data used for construction of the phase. To
understand the consequences of phase distortion,
note that if J(x) were a purely even function about
x=3a, the phase 6(8) would vary linearly with slope
~3a between minima, jumping discontinuously by
7 at each minimum. Since the constructed 6(B) has
roughly this form the J(x) is indeed approximately
even. Now the even and odd parts of g(x) about
x=%a are

9.X)= | dBL, (B) cos[0(p) +5 fa] cosBx
and
M-
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FIG. 3. (a) Current density profile J(x) deduced from

the data of Figs. 1 and 2. (b) Decomposition of J (x) into
even (crosses) and odd (circles) contributions.
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FIG. 4. I (B) pattern at 1.46 °K for a Sn-oxide-Sn
junction for positive B. The central maximum is re-
duced by a factor of 5. Crosses indicate the positions
and heights of the maxima for a Fraunhofer pattern.

9u)= [ dBI(H) sin[o(8)+} fa]singlx) .

Since 6(B) has approximately the form expected for
an even function, 6(p) +3 fa is approximately equal

to some integral multiple of 7. Then cos[6(B) +3 Ba]
and hence J,(x) are relatively insensitive to small
deviations of 6(8) from linearity, while sin[0(B)+3 fa]
and Jo(x) will be more sensitive. The effect of a
slight error in the form of 6(p) for these nearly even
functions, then, will be to produce a spurious odd
part with little effect on the even part. Consequent-
ly the even part of J(x) is more to be trusted than the
odd part. This is especially true for sharp features
in the odd part, since the phase reconstruction must
necessarily be less accurate at higher values of B,
closer to the cutoff of the I,(B).

In Fig. 3(b) we show a decomposition of J(x) into
even and odd parts, where the center point is chosen
to match the sharp increases at the two edges. The
even part is a relatively smooth square barrier with

somewhat rounded shoulders and little fine structure.

The odd part contains somewhat more prominent
fine structure although it has a much smaller over-
all amplitude. In particular, the sharp negative
feature just beyond the junction edges is present
largely in-the odd part, suggesting that it is an ar-
tifact of the phase construction. The tendency of the
supercurrent to be more concentrated in the junction
center shown by Fig. 3 is reflected in the somewhat
oversized value of B at the first minimum, some
4% larger than the average spacing of the minima.
Figure 4 shows the I,(B) for a second Sn-oxide-Sn
junction at 1.46 °K. The junction dimensions were
a=0.22 £0.01 mm and b=0.41+0.01 mm with a
film thickness of ~ 2000 A. The oxide was grown
in a plasma discharge on the strip lying parallel to
the applied B. The I,(B) again has roughly the
Fraunhofer form with some deviations. The maxi-
mum I, was 0.758 +0.003 mA and the average mag-

the data of Figs. 4 and 5.
even (crosses) and odd (circles) contributions.

netic field period was 0.83+0.01 G corresponding
to a 2X+d of 1130£50 A. The self-field tilt was
negligible, AB;<0.03 G.

The amplitudes of the secondary maxima of I,(B)
here again fall off faster than for the Fraunhofer
form, the first being about 20% low and the others
dropping off still more steeply. The minima are
relatively deep, with the critical current actually
being strictly zero for the higher-order minima.
The flat-bottomed shape of the higher-order mini-
ma, in fact, is characteristic of noise decoupling.
The smaller over-all critical current makes noise
a more serious problem for this junction than the
first. Since the phase-construction integral (5)
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FIG. 6. (a) Current density profile J(x) deduced from

(b) Decomposition of § (x) into
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cannot cope with zero I, over a finite range, we have
arbitrarily given a small value to I, in these regions,
as shown in Fig. 4. Consequently the constructed
J(x) is more subject to uncertainty than for the
junction of Figs. 1-3.

In Fig. 5 we show 6 constructed from this I.(B),
and in Fig. 6(a) and 6(b) the J(x) and its odd and
even parts. The value of I, at intervals of 0.03 G
out to the tenth fringe were used in the construction,
giving a resolution of some 23 points in the barrier.
Here again we have a relatively smooth square bar-
rier although it is somewhat more rounded than that
of Fig. 3. The concentration of current near the
junction center is supported by the larger spacing,
by some 4; %, of the first minimum of I(B) com-
pared to the average spacing between minima.

For both these junctions having plasma-discharge
grown oxides, the current is carried more strongly
in the center of the barrier. This indicates a pref-
erential oxidation of the edges of the film in the
discharge. It is not surprising that there should be
some spatial dependence of the oxide growth in view
of the complex electric field patterns and plasma
nonuniformity which undoubtedly exist around the
film in the oxidation process.

We have performed similar measurements of Pb-
oxide-Pb junctions having a thermally grown oxide.
In these cases also we find a relatively uniform cur-
rent density in the better junctions, often with a
slight tendency for concentration of current away
from the junction center. Somewhat more difficulty
is encountered in these measurements because the
higher transition temperature of Pb makes it more
difficult to avoid trapped flux effects.

It should be noted here that the use of rectangular
junctions has the disadvantage that for perfectly uni-
form barriers the I(B) is expected to vanish peri-
odically. This leads, as we have seen, to problems
with thermal noise distortion. Additionally, the
phase-construction integral (5) is sensitive to the
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FIG. 7. I,(B) pattern for Sn-CdS-Sn junction. The
‘central maximum is reduced by a factor of 5. Crosses
indicate the positions and heights of the maxima of a
Fraunhofer pattern.
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FIG. 8. Constructed phase 0(B) for the I (B) pattern

of Fig. 7.

small values of I,, and its accuracy suffers if small
errors are made in the measurement of the minima.
Both problems would clearly be alleviated by the
choice of an asymmetric shape of the juhction, e.g.,
a triangle or a “T” -shaped junction for which I,(B)
shows oscillations with relatively shallow minima.
Such junction shapes are desirable if one wishes to
measure J (x) with greater accuracy, but for our
purposes we find the method is sufficiently accurate
that we may confine the present discussion to the
more familiar rectangular junction.

The I,(B) pattern of Fig. 7 arises from a Sn-Sn
junction whose barrier is formed from insulating
CdS in the manner reported by Giaever.'® The re-
markable feature of this system is that the CdS is
photosensitive. The exposure of the junction to light
at low temperatures can decrease its resistance and
enhance its supercurrent capacity by two or three
orders of magnitude. The low-resistance state is
metastable at liquid-He temperatures, the high-re-
sistance state being recoverable by thermal cycling
above ~ 100 °K. It has been suggested that the illu-
mination in some fashion readjusts the Fermi level in
the CdS, consequently altering the tunneling proba-
bility. In our junction the dimensions were a=0. 54
+0.01 mm and b=0.42+0.01 with a Sn thickness of
~ 2000 A for the bottom film and ~ 500 A for the top
film. The smaller thickness of the top film was in-
tended to provide transparency for the illumination
of the 130-A-thick CdS. The I(B) pattern here,
taken at 1.45 °K after the resistance had been re-
duced by illumination, also resembles the Fraunhofer
form. The maximum critical current was 0.114
+0.002 mA and the average magnetic field period
was 0.35+0.01 G, corresponding to a value of 1090
+60 A for 21 +d. This small value presumably re-
flects the fact that the top film is not thick compared
to A, 18

The secondary maxima of I,(B) beyond the first
have amplitudes rather larger than those of the
Fraunhofer pattern. The minima are deep but not
zero at the lower values of B, and of irregular
heights. Although the minima are in the 1-10 pA
range their shapes do not appear to be obviously
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FIG. 9. (a) Current density profile J(x) deduced from

the data of Figs. 7 and 8. (b) Decomposition of  (x) in-
to even (crosses) and odd (circles) contributions.

distorted by noise. The difference between this
junction and the Sn-oxide-Sn junctions in this re-
spect is not fully understood but may have to do with
the altered capacitance and the substantially smaller
shunt resistance at low voltages present in this
junction.
Figure 8 shows the phase 6(B) for the I,(B) of Fig.

7. The d (x) constructed from this amplitude and
phase is shown in Fig. 9(a), and its odd and even
parts Jy(x) and J,(x) in Fig. 9(b). Here the points
of I, used in the construction were taken at 0.026 G
intervals out to the 12th sidelobe, giving a resolu-
tion of 25 points in the barrier. The notable features
are a sharp narrow rise in § (x) just at the two edges
of the junction and considerable structure in the in-
terior of the junction. Both features are present in
J,(x) as well. From the I,(B) we observe that the
first minimum occurs at a B some 11% smaller than
the average spacing, indicative of a concentration
of current away from the junction center. Also,

the excess heights of the secondary maxima require
that there be fine structure within the junction. In
Fig. 10 we show the J (x) derived by the alternate
method discussed in Sec. II, that of assuming g (x)
even. Here again the sharp concentration of current
at the junction edges and the structure within the
junction are visible in agreement with the Hilbert
transform procedure. From the failure of the min-
ima to vanish identically, we expect an odd part of
g as well. For example, the first minimum is

R. C. DYNES AND T. A.

FULTON 3

1.5 pA, which would correspond to a purely linear

odd part that would give an 8% difference between
the two edges of the junction. The larger current

at the second minimum shows that the odd part is
not particularly linear however.

That the current distribution shows a sharp in-
crease at the junction edges is reasonable in view of
the extra intensity of the illumination of the CdS
which must occur at the junction edges. Indeed, it
has been reported!” that the effectiveness of light
in decreasing the junction resistance and enhancing
the Josephson current is considerably weakened if
the edges of the junction are masked during the il-
lumination, an effect which would depend of course
on the transparency of the Sn film. Here the actual
contribution of the edges to the total supercurrent
is of the order of 15%, indicating that the film is
sufficiently transparent that most of the junction is
sensitized as well. The structure within § (x) sug-
gests that either the illumination is not uniform or
the photosensitivity of the CdS is not uniform within
the junction. In any case there is a considerable and
rapid variation in the supercurrent density within
the junction.

In summary it has been shown that for Josephson
tunneling junctions the uniformity of the tunneling
barrier can be determined quantitatively from the
I,(B) pattern. It has also been shown that good
quality junctions can be obtained in the case of
plasma-grown oxides of Sn and thermally grown ox-
ides of Pb, and that the usual assumption of constant
current amplitude is nearly valid. This method of
analysis has also been applied to the light-sensitive
Sn-CdS-Sn junctions reported by Giaver. Here we
find the supercurrent density is very spatially de-
pendent, possibly as a result of variations in the
exposure of the CdS to the incident illumination.
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FIG. 10. J(x) derived from the data of Figs. 7 and 8
assuming the distribution is an even function. This cur-
rent density profile is symmetric about x=0.
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The electronic thermal expansion and longitudinal magnetostriction of polycrystalline PdRh
alloys are measured, and the volume dependence of the Coulomb-exchange interaction param-

eter is deduced.

The alloys PdRh are of considerable interest
since the exchange enhancement of the magnetic
susceptibility, which is already large in Pd, be-
comes even stronger as Rh is substituted for Pd.
This increase in the susceptibility is associated
with an increase in the density of states at the Fermi
surface, which shows in the electronic specific
heat. Both the susceptibility and the specific heat
have a maximum at about the composition Pd, g5-
Rhg g5. !

We describe in this paper measurements of the
low-temperature thermal expansion and the longi-
tudinal magnetostriction of polycrystalline samples
of pure Pd?and the alloys Pdg g9 Rhy, o1, Pd, g7 Rhy, g3,
and Pdj g5 Rhy, 5. We have previously assumed the
magnetostriction to be isotropic in the cubic transi-
tion metals® ® and obtained the volume dependence
of the susceptibility by taking the volume magneto-

striction to be three times the longitudinal magneto-
striction. However, Keller et al.* have recently
found that the magnetostriction of polycrystalline
samples of Pd and the PdRh alloys is strongly aniso-
tropic. Since their values for the longitudinal mag-
netostriction agree reasonably well with ours, we
have employed their values for the volume magneto-
striction to deduce the volume dependence of the
susceptibility for comparison with the electronic
Gruneisen parameter obtained from our thermal
expansion data. -

We measured the thermal expansion and the lon-
gitudinal magnetostriction (at 4.2 °K in fields up to
35 kOe) using a capacitance dilatometer.® The
Grineisen parameter ¥ is 3a/kC, where « is the
electronic thermal expansion coefficient (linear in
temperature), « the compressibility (assumed equal
to that of Pd®), and C the electronic specific heat.?



